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Abstract—It is exceedingly difficult to find suitable procedures 
for reading out huge arrays of metallic magnetic calorimeters; in 
order to maintain the intrinsic quick signal rise time, excellent 
energy resolution, large energy dynamic range, and highly linear 
detector response, each system stage must function at its peak. 
The key to accomplishing this is a superconducting quantum 
interference device-based multiplexer. A method known as flux-
ramp modulation, which creates a phase-modulated complex 
waveform based on the sensor data, is necessary for the response 
to be linear. Currently, it is retrieved at the conclusion of the 
signal processing chain by a demodulation method known as 
Fourier measurement. This letter presents an alternative 
approach based on the eigenvalue decomposition of a correlation 
matrix, establishes the equivalenty between the mentioned 
method and a maximum likelihood estimation, builds an analogy 
to the sensor array-based direction of arrival estimation, presents 
the mathematical formulation, discusses the results, and 
compares the two approaches. Our technique enables accurate 
estimation across a wide phase range and is resistant to 
transients caused by the flux ramp returning point. 

Index Terms—Array signal processing, eigenvalue 
decomposition, microwave SQUID multiplexer, neutrino mass 
investigation. 

 

I. INTRODUCTION 

ICROWAVE SQUID multiplexing (μMUXing) is cur- 

rently a research topic of the highest importance since 

it allows the readout of large low-temperature sensor arrays [1], 

[2]. In recent years, a great effort has been made to demonstrate 

the feasibility of small array multiplexer systems which can scale 

up to hundreds/thousands of pixels like, for instance, metallic 

magnetic calorimeters (MMC) [3]–[5]. 

MMCs are cryogenic detectors operated at temperatures well 

bellow 100 m K, typically 10 m K T 30 m K. They are 

composed of a particle absorber with heat capacity C strongly 

coupled to a temperature sensor which has a weak thermal link 

 

G to a thermal bath [6], [7]. MMCs use a metallic, param- 

agnetic temperature sensor located in a weak magnetic field 

to convert the temperature deviation ΔT into magnetic flux 

variation ΔΦ. The change on the detector temperature due to an 

energy input leads to a change of the sensor magnetization, and 

consequently, intensify or mitigate the magnetic flux threading 

a pickup coil [6], [7]. This detectors deserve special attention for 

their excellent energy resolution, fast intrinsic signal rise time 

(values below 100 ns), large energy dynamic range as well as 

highly linear detector response [5]. These are characteristics that 

underlie its usage on several knowledge fields including high- 

resolution X-ray spectroscopy in atomic and nuclear physics [8], 

[9], radiation metrology [10], direct Neutrino mass investiga- 

tion [11], [12], among others. 

The magnetic flux variation is sensed by a superconducting 

quantum interference device (SQUID). In principle, a single 

non-hysteretic SQUID acts like a magnetic flux controlled vari- 

able inductance L(Φ), so that it is inductively coupled to the 

termination of a quarter-mode superconducting transmission 

line with nominal resonant frequency fr in the GHz range. As a 

consequence of the resonator capacitive coupling to a feed line 

and the inductive termination, the branch will have an effective 

resonant frequency fe [13]. Optimization of physical resources 

is achieved by attaching two pixels to a single SQUID, providing 

positive or negative pulses. 

The μMUXing strategy consists of reusing the mentioned 

structure based on a frequency division multiplexing (FDM) 

technique. The multiplexer and the processing system commu- 

nicate by a read out electronics developed specifically for this 

purpose. The Electron Capture in 
163

Ho experiment (ECHo) 

is a great example of such system implementation. Several 

non-hysteretic, unshunted rf-SQUIDs modulate the detector 

signals onto carriers ranging from 4G Hz to 8GHz, see [12]. 

A software-defined radio (SDR) was completely developed to 

tackle the system requirements as described in [14], [15]. 

A technique to linearize the SQUID response is mandatory, 

a flux-ramp modulation is applied to all SQUIDs, which can 

be sinusoidal-, sawtooth- or triangle-shaped [2], [14], [16]. It 

continuously modulates a complex carrier in magnitude and 

phase by shifting fe forwards and backwards, in addition, energy 

inputs from energetic particles contribute on the actual flux state 

of the respective SQUID. Therefore, each μMUXing channel 

is a single-input single-output (SISO) system, and the pulse 

information could be retrieved from the data set. Fig. 1 shows 

the complete system including the SDR strategy. 
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Fig. 1.    Schematic representation of the SDR strategy, the µMUXing, and 
carrier flow. 

 

 

We then assume that the system consists of N transmission 

lines and there are two MMCs coupled to each SQUID. For si- 

multaneous readout of 2 N pixels, there are N resonant circuits. 

Each circuit will be associated biunivocally to a carrier tuned 

to a specific frequency, so that a frequency comb is fed into a 

common feedline. The frequency comb is generated in a field- 

programmable gate array (FPGA) and mixed to a local oscillator 

(LO) at the radio frequency (RF) front-end, it is adjusted to 

slightly mismatch the resonators’ frequencies. After each carrier 

is modulated by the respective SQUID response, it follows the 

path to a high electron mobility transistor (HEMT) amplifier [5]. 

Finally, the carriers are down-converted using the same LO 

frequency and the channelization is performed by the FPGA. The 

pulse information is available on the phase-modulated SQUID 

response, either to process it online or for saving the data in a 

storage device [15]. 

Great results have being achieved so far, however, extracting 

the pulse signal from the SQUID response can be challenging 

and should be carefully handled in order to preserve the signal’s 

bandwidth. In this way, the flux-ramp modulation has posed new 

problems and few authors have addressed the signal processing 

at this step of the system chain. 

In this letter, we discuss the phase estimation method pre- 

sented in [16], we also propose an alternative approach based 

on the eigenvalue decomposition (EVD) and compare their 

performances. Our method arises from the analogy with the 

 

Fig. 2. Top: sawtooth-shaped ramp without (blue) and with event (green). 
Bottom: typical SQUID response’s magnitude to the applied flux (blue) and in 
case an event occurred (green). The pulse duration is significantly reduced for 
the sake of clarity. It is usually between 10 and 100 flux ramp cycles. 

 
window T0 < T , and discard the samples affected by ramp-reset 

transient [16]. 

Assuming the slope of the ramp exceeds the slew rate of any 

input signal, the phase of the SQUID response is: 

φ = 2π 
Φin 

, (1) 
Φ0 

where Φ0 = 2.067fW b is the magnetic flux quantum. 

In (1) the instantaneous phase is a function of the input signal 

and the SQUID response will be periodic with cycles determined 

by Φ0. In Fig. 2 we present a sawtooth ramp and the periodic 

SQUID response. 

In [16] the authors refer to a simple Fourier measurement 

which is used to estimate the phase shift of the SQUID response’s  

magnitude, however, this is an imprecise denomination. We now 

deliver the maximum likelihood (ML) method applied to flux- 

ramp demodulation, with mathematical thoroughness, and prove 

that both are the same. 

If the resulting waveform due to (1) could be modeled as an 

essentially sinusoidal wave, then we assume the phase shift is 

unknown and deterministic and proceed as follows [17]. 

In general terms, a received carrier r(t) is represented by its 

orthonormal expansion r, and given the reference carrier s(t; θ) 
with delay τ and phase φ in θ = τ,φ , the probability density 

function is written as [17]: 
 

    1 
N Σ [r − s  (θ)]2 

 
 

 

 

 

This work is organized as follows: Section II focuses on 

the flux-ramp modulation and the respective SQUID response, 

as well as its demodulation process. Section III describes our 

proposal based on the EVD of a correlation matrix applied to 

the phase-shift estimation. Section IV present the main results 

for measured and simulated data. Finally, Section V draws the 

conclusion and brings suggestions for future work. 

where rn =  T  r(t)ψn(t)dt,  and  sn(θ) =  T  s(t; θ)ψn(t)dt, 
are the coordinates of vectors r and s from the orthonormal 

expansions of r(t) and s(t; θ) within T0 (integration range). 

The noise e(t) is considered to be zero-mean white Gaussian. 

Making N , the maximization of p(r θ) with respect to 

the carrier phase φ, considering null delay (τ = 0), is equivalent 

to maximizing the likelihood function: 

 

II. THEORETICAL FRAMEWORK - FLUX-RAMP 

Λ(φ) = exp 
1

 
N0 

∫

T0

 [r(t) − s(t; φ)]2 dt

   

. (3) 

(DE)MODULATION 

The flux-ramp modulation strategy was successfully intro- 
The cross-correlation alone is of interest, and the likelihood 

function can be written as: 
 

duced to read out multiple SQUID responses on the context of an 

FDM technique [16]. The ramp is not infinite, thus, we consider 

Λ(φ) = C exp  
  2

 
N0 

∫

T0

 

r(t)s(t; φ) dt

  

, (4) 

a sawtooth or a triangular wave with period T , an observation where C is constant and independent of φ. 

sensor array-based direction of arrival (DOA) estimation, since 

both of them deal with phase/frequency estimation. 
p(r|θ) =  , (2) 
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The ML estimate φ̂ML  is the value φ that maximizes (4), or 

equivalently, is the value that maximizes the logarithm of Λ(φ), 
known as the log-likelihood function [17]: 

 

  2 
ΛL(φ) =  

N0 

∫

T0

 

    

r(t)s(t; φ) dt. (5) 

Now, restricting the analysis to the flux-ramp demodulation, 

as long as the SQUID response frequency fSR is known, the 

waveform can be represented as: 

r(t) = A cos(2πfSRt + φ)+ e(t). (6) 

The sought parameter is the value φ that maximizes (5), so 

that the derivative must be zero, which yields the expression: 

 

  
 

Fig. 3. Considering a triangular ramp, left side shows the (a) I and (b) Q 

∫

T0

 r(t) sin(2πfSRt + φ̂ML) dt = 0. (7) 
components from the measured SQUID response, and right side presents the 
respective (c) EVD and (d) ML estimates. The phase shift relative to the rising 
ramp slope has opposite signal compared to the descending ramp slope. 

Finally, using the arc sum of a sine function, and defining 

a sampled version of the phase-modulated SQUID response as 

yM (n)     r(n) = A cos(2πfSRTSn + φ)+ eM (n), where TS 
is the sampling period, the phase parameter is given by [17]: 

 

them. Therefore, R can be written as: 

1  
   

|xR|2 + Nσ2 ⟨xR, xM ⟩∗ 
 

  

 
 

, (13) 

    ⟨xR, xM ⟩ |xM |2 + Nσ2 

φ̂ML(n) = − arctan 
N 
n=1 
N 
n=1 

yM (n) sin(2πfSRTSn) 

yM (n) cos(2πfSRTSn) 
. (8) 

The characteristic polynomial provides the eigenvalues in 

terms of the mean power and the cross-correlation between xR 
and xM . After performing some simplifications and discarding 

III. SENSOR ARRAY-BASED SIGNAL PROCESSING negligible terms, the eigenvalues are given by: 

Our proposal is an analogy to the DOA problem, where several 

sensors record signal samples in space domain [18]. Consider 

in μMUXing that each resonator is a subsystem, there will be 

only one source M = 1 (the SQUID/pixels compound), and 

λ  ≈ 
  1    

|x 

λ  ≈ 
  1    

|x 

|  + |xM 

|  + |xM 

|  + 2|⟨xR 

|  − 2|⟨xR 

, xM 

 
, xM 

⟩|
  

+ σ2, (14) 

⟩|
  

+ σ2. (15) 

one communication channel K = 1 (the carrier bandwidth). To 

apply the DOA theory to the μMUXing estimation problem, 

we set a virtual sensor as a reference. This reference is obtained 

from the SQUID response for an idle system, i.e., no temperature 

change, no phase shift. Let the row vector xR(n) be the reference 

for the non-modulated complex SQUID response and xM (n) the 

phase-modulated response. Considering that the waveforms are 

harmed by a zero-mean white Gaussian noise, the reference and 

modulated SQUID responses are expressed respectively as: 

yR(n) = xR(n)+ eR(n); (9) 

yM (n) = xM (n)+ eM (n). (10) 

The data matrix Y2×N (snapshot matrix in DOA), is set by 

concatenating the time series relative to each sensor as follows: 

Thus, at least theoretically, the difference between both eigen- 

values is immune to the noise effects, similarly to what happens 

in SEAD method on DOA [19]. However, experiments have 

shown that λ1 fails to provide the phase estimates. We therefore 

assume λ2 as a phase-shift estimator [20]. 

 
IV. EXPERIMENTAL SETUP, EVALUATION AND RESULTS 

In this section, we report on the estimation results from 

simulations performed in Matlab and from measured data. The 

experimental setup is the same presented in [14]. After channel- 

ization, the SQUID response has in-phase and quadrature (I/Q) 

components and both are phase-modulated. In Fig. 3 we present 

some results from measured data. The measurement setup had 

a sampling frequency fS = 15.625 MHz after channelization, 

Y(n) = 
yR(n)

 
yM (n) 

 
2×N 

, (11) 
the flux was a triangle-shaped ramp with frequency framp = 
25 kHz, and peak amplitude Aramp = 6Φ0, furthermore, a data 

block is of length fS/framp = N = 625. On the left side of 
so that the spatial correlation matrix R2×2 is estimated by: 

R(n) =  
1  

(Y(n) Y∗(n)) = 
N 
  

⟨xR(n),xR(n)⟩ + σ2 ⟨xM (n),xR(n)⟩ 

Fig. 3, we present the I/Q components of the SQUID response 

with normalized magnitude ( y = 1), and, on the right side, 

the estimated pulse from both assessed methods applied to the 

measured data. The rise time of the estimated pulse, whether 

 

N N e 

where , is the complex inner product, ( )∗ denotes the 

conjugate transposition and N is the number of samples. The 

(n) indicates the sampling instant of the first entry in a data 

vector. Henceforth, it will be omitted for the sake of simplicity. 

The spatial correlation matrix depends on the auto- 

correlations of xR and xM and the cross-correlation between 

N , i.e., one flux ramp cycle τrise = 40 μs. EVD allows the 

estimation without special procedure for both sawtooth and tri- 

angular ramps. However, this does not hold for the ML method, 

because the flux ramp introduces transients near to its reset 

point and the carrier undergoes an unexpected behavior [16]. 

Specially for the triangle ramp, during the pulse activity, the 

phase gets abruptly delayed or advanced according to the flux 

using the ML or the EVD, depends directly on the data amount 

e N 

= , (12) 
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Fig. 4. Estimates using EVD for (a) complex SQUID response or its (b) 
in-phase and (c) quadrature components. 

 

 

ramp slope, as highlighted in Fig. 3. Therefore, ML demands 

additional resources in order to estimate the phase shift, on the 

contrary, EVD method performs the estimation without further 

processing. 

In Fig. 4, we modeled the SQUID response as an ideal 

complex exponential in the absence of noise. Simulations were 

performed considering a sampling frequency fS = 15.625 MHz, 

a sawtooth modulation with frequency framp = 25 kHz, and 

peak amplitude Aramp = 5Φ0, an arbitrarily chosen phase shift 

φ = 24◦, and a block length fs/framp = N = 625. The eigen- 

value method is able to estimate the phase shift from both real 

and complex responses. All three estimates presented a long rise 

time (τrise = 40 μs) proportional to the number of points used 

in the data vector. 

In order to assess the performance of the methods, we sim- 

ulated them for multiple SNRs and amplitudes of phase shift, 

which represents different energy inputs. After scaling the max- 

imum amplitudes of the pulses to one, we computed the mean 

square error (MSE) between the original and estimated pulses 

over the decay time interval. We performed 20 experiments for 

each of the different scenarios shown in the error surfaces in 

Fig. 5. Low MSEs indicate suitable estimates. 

Fig. 5(a) shows that, when the SQUID response is modeled as 

ideal complex exponentials, the EVD produces suitable pulses 

in a long phase shift range ( 1000◦, 1000◦). It also shows that 

the smaller the phase shift, the greater the influence of noise. 

Furthermore, for very large phase shifts the pulse shape gets 

distorted and larger errors are observed. Thus, there is an optimal 

region for pulse estimation using the proposed method. This 

holds for both negative and positive pulses. On the other hand, 

the ML method fails to estimate in this case, since the SQUID 

response’s magnitude fluctuates around 1. 

Actually, after channelization, the SQUID response compo- 

nents are not pure sinusoidal waves, so the dominant frequencies 

in I and Q may differ from each other. To the best of our 

knowledge, an important case arises when the frequencies differs 

by a factor of 2. Fig. 5(b) and 5(c) show the performances for both 

methods setting the in-phase frequency fi = 300 kHz and the 

quadrature frequency fq = 600 kHz. In this case, Fig. 5(b) shows 

that EVD estimates were effective for phase-shift magnitudes 

in the range ( 100◦, 100◦) and SNRs above 5dB. EVD had 

a minimum MSE lower than that of the ML method. It also 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 5. Performance surfaces for (a) EVD over ideal complex exponential 
SQUID response, (b) EVD over a complex SQUID response with different 
frequencies, and (c) ML over the SQUID response’s magnitude with different 
frequencies [20]. 

 

provided better estimates than in the case where the SQUID 

response was modeled as ideal complex exponentials. Fig. 5(c) 

shows that the ML has shown good robustness against noise and 

performed well in the range ( 50◦, 50◦). However, due to the 

arc-tangent function range limitation, the pulse gets distorted 

and the ML estimation fails outside (−90◦, 90◦). 

V. CONCLUSIONS AND REMARKS 

This letter demonstrated for the first time that the mentioned 

Fourier measurement method is, in fact, the maximum 

likelihood estimator, using a thorough mathematical analysis 

of phase-shift estimation due to flux-ramp modulation. 

Furthermore, we utilized a sensor array technique to 

demonstrate that the correlation matrix's second eigenvalue is 

a competitive phase-shift estimator that significantly 

influences μMUXing, as it exhibits resilience against ramp 

transients and a wider energy dynamic range. Although more 

research is necessary, this strategy is a strong contender to 

address the multiple SQUID per regulator architecture and 

create a multiple-input multiple-output (MIMO) system, as the 

analogy to DOA estimation indicates. 
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